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Abstract:  Choosing a probability distribution to represent daily precipitation depths is 12 

important for precipitation frequency analysis, stochastic precipitation modeling and in 13 

climate trend assessments.  Early studies identified the 2-parameter Gamma (G2) 14 

distribution as a suitable distribution for wet-day precipitation based on traditional 15 

goodness of fit tests.  Here, probability plot correlation coefficients and L-moment 16 

diagrams are used to examine distributional alternatives for the full-record and wet-day 17 

series of daily precipitation at the point and catchment scales in the United States.  18 

Importantly, the G2 distribution performs poorly in comparison to either the Pearson 19 

Type-III (P3) or Kappa (KAP) distributions.  The analysis indicates that the P3 20 

distribution fits the full record of daily precipitation at both the point and catchment 21 

scales remarkably well; while the KAP distribution best describes the distribution of wet-22 

day precipitation at the point scale, and the performance of KAP and P3 distributions is 23 

comparable for wet-day precipitation at the catchment scale.  24 

 25 
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1. Introduction 30 

Establishing a probability distribution that provides a good fit to daily 31 

precipitation depths has long been a topic interest in the fields of hydrology, meteorology, 32 

and others.  The investigations into the daily precipitation distribution are primarily 33 

spread over three main research areas, namely, (1) stochastic precipitation models, (2) 34 

frequency analysis of precipitation, and (3) precipitation trends related to global climate 35 

change.  Table 1 displays a sampling of the literature in these three fields, the particular 36 

precipitation series and durations under investigation, and the proposed distributions 37 

identified.  Table 1 is by no means exhaustive; it only attempts to document the 38 

widespread interest in the determination of a suitable distribution for daily precipitation 39 

totals for various purposes.   40 

[Table 1 goes here] 41 

1.1 Stochastic precipitation and climate models: 42 
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The first section in Table 1 presents a small portion of the literature related to 43 

stochastic precipitation modeling also referred to as stochastic weather modeling.  The 44 

purpose of such models is not so much to investigate the properties of precipitation, but 45 

instead to produce artificially generated precipitation sequences that can be used as inputs 46 

to other models to explore the behavior of hydrologic systems (Buishand, 1978;Waymire 47 

and Gupta, 1981).  A wide range of types of stochastic precipitation generators exist as 48 

evidenced from review articles Waymire and Gupta (1981), Wilks and Wilby (1999), 49 

Srikanthan and McMahon (2001) and Chen and Brissette (2014).  Also see the 50 

introduction of Mehrotra et al. (2006) for a nice review.   51 

Since our central goal is to select a suitable generalized probability distribution 52 

for modeling daily precipitation depths, we are only concerned with the class of “two-53 

part” stochastic daily precipitation models that utilize a probability distribution function 54 

to describe precipitation amounts on wet-days, while precipitation occurrence is 55 

separately described using a Markov model or some form of a stochastic renewal process 56 

(Buishand, 1978;Geng et al., 1986;Waymire and Gupta, 1981;Watterson, 2005).   57 

It is evident from Table 1 that the wet-day precipitation series is virtually the only 58 

daily precipitation series that is even considered in the stochastic precipitation model 59 

literature.  Thom’s (1951) suggestion of the 2-parameter Gamma (G2) distribution 60 

function for wet-day amounts seems to carry considerable weight.  Following the 61 

suggestion of numerous previous authors, both Watterson and Dix (2003) and Watterson 62 

(2005) assumed a Gamma distribution for wet-day rainfall in the development of 63 

stochastic rainfall models.. Buishand (1978) lent support to the suggestion of the Gamma 64 

distribution by showing that for the wet-day series at six stations, the empirical 65 

Coefficient of Variation to Coefficient of Skewness ratio was quite close to the 66 

theoretical value of two for a Gamma distribution.   67 

Geng et al. (1986) used a simple regression to show that the beta parameter of the 68 

Gamma distribution for a given month can be predicted reasonably well by the average 69 

rainfall per wet-day in that month.  Geng et al. (1986) also provided a good review of 70 

other literature supporting the use of the Gamma distribution for modeling wet-day 71 

rainfall.  72 

While the G2 distribution is by far the most preferred distribution for wet-day 73 

precipitation amounts, other distributions have also been suggested.  Woolhiser and 74 

Roldan (1982) and Wilks (1998) both suggested the use of a three-parameter mixed 75 

exponential distribution instead of G2.  The three-parameter exponential distribution can 76 

describe wet-day amounts by mixing two distinct exponential distributions (each with its 77 

own mean parameter) with a parameter that chooses which one to use.  Through a variety 78 

of goodness of fit tests and log-likelihood analyses, the mixed exponential is shown as 79 

being preferred to G2 (Wilks, 1998).   80 

The Weibull (W2) and to a lesser extent the exponential distribution have also 81 

been suggested for modeling daily precipitation amounts (Duan et al., 1995;Burgueno et 82 

al., 2005).  Duan et al. (1995) used a Chi-squared test to demonstrate that synthetic 83 

rainfall generated from the Weibull and Gamma (with parameters estimated by method of 84 

moments) models best matches the observed data within each month.  Separate models 85 
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were created for each calendar month.  (Burgueno et al., 2005) used graphical methods 86 

and the Kolmogorov-Smirnov test to give support to the W2 and exponential distributions.   87 

1.2 Precipitation frequency analysis: 88 

The second section of Table 1 displays a small portion of the literature related to 89 

precipitation frequency analyses.  Extreme values of rainfall are of particular interest to 90 

urban planners, engineers and hydrologists working on problems related to storm 91 

drainage, flooding, and other natural hazards such as precipitation-induced slope failures 92 

(landslides).  Precipitation frequency analyses are one way to generate the necessary 93 

precipitation totals at given return period for hydraulic design purposes.  A key step in 94 

frequency analysis of precipitation involves selection of a suitable distribution for 95 

representing precipitation depths to investigate the extremes.  While these analyses can 96 

be conducted for multiple precipitation durations, we focus on those that investigate the 97 

1-day duration.   98 

As the extreme rainfall values are of primary importance in these studies, a highly 99 

censored series of rainfall is often useful in these analyses.  The Annual Maximum Series 100 

(AMS) and Partial Duration Series (PDS) are often used in hydrologic frequency 101 

investigations (Stedinger et al., 1993).  Table 1 displays that many of the precipitation 102 

frequency investigations of daily precipitation depths have selected the AMS series.  The 103 

wet-day series is actually a PDS with zeros and values lower than the detection limit of 104 

the instrument (i.e., “trace” values) censored. 105 

In perhaps the most comprehensive assessment of the distribution of precipitation 106 

extremes, Papalexiou and Koutsoyiannis (2013) examined the goodness-of-fit of the 107 

GEV distribution to a global dataset of AMS at 15,137 sites with lengths varying from 40 108 

to 163 years.  Analysis of such a large dataset enabled them to conclude that GEV models 109 

of AMS series of daily precipitation provide a good approximation with the shape 110 

parameter depending critically upon both the location and length of the series under 111 

consideration. Interestingly, when record length and location are taken into account, the 112 

shape parameter appears to exhibit a relatively narrow range of small positive values.   113 

For many years, the most common approach to summarizing precipitation 114 

frequency analyses in the United States was the work of Hershfield (1961), which is 115 

commonly referred to as TP-40.  Hershfield (1961) fitted a Gumbel distribution to the 116 

AMS series of 24-hour precipitation.  More recently investigators have completed these 117 

types of analyses by using the method of L-moments and other methods that are more 118 

powerful than the traditional goodness of fit measures.  In the context of a national 119 

revision to the TP-40 rainfall frequency atlas and after the application of L-moment 120 

goodness-of-fit evaluations, Bonnin et al., (2006) fitted a generalized extreme value 121 

(GEV) distribution to the AMS of rainfall.    122 

Bonnin et al. (2006) performed a very comprehensive national assessment of 123 

precipitation frequency by applying the most up-to-date developments in regional 124 

frequency analysis to series of annual maximum n-minute precipitation.  Using both at-125 

site and regional L-moment goodness-of-fit results, climatic considerations and 126 

sensitivity testing, the GEV distribution was selected to best represent the underlying 127 

distributions of all daily and hourly AMS rainfall data. GEV was also selected for the 5-, 128 

10-, and 15-minute AMS rainfall data.  Naghavi and Yu (1995) also chose the GEV for a 129 
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study of rainfall extremes in Louisiana.  Similarly, Lee and Maeng (2003) selected the 130 

GEV and the generalized logistic distributions based on L-moment analysis of 58 stations 131 

in Korea. 132 

While the results of Bonnin et al. (2006) apply to the United States, other authors 133 

have found similar results using similar methods in other parts of the world.  Pilon et al. 134 

(1991) used L-moment goodness-of-fit results to show that the Gumbel distribution 135 

should be rejected in the favor of the GEV in Ontario, Canada.  In Korea, Park and Jung 136 

(2002) successfully used the Kappa distribution (of which the GEV is a special case) to 137 

generate extreme precipitation quantile maps using both Maximum Likelihood 138 

Estimators (MLE) and L-moment estimators (L-ME) for Kappa parameter estimation.  139 

They found convergence failure at some stations for the L-ME, and lack of fit for those 140 

series fit with MLEs when sample size was too small.   141 

Interestingly, while a great deal of attention is given to fitting distributions to the 142 

relatively short AMS series of precipitation depths, very few studies directly explore the 143 

probability distribution of the complete series of daily precipitation (including zeros) or 144 

the wet-day series of daily precipitation (zeros excluded).  Shoji and Kitaura (2006) 145 

investigated both full-record and wet-day daily precipitation series, but included only the 146 

normal, lognormal, exponential, and Weibull distributions as candidate distributions, and 147 

did not employ modern regional hydrologic methods such as the method of L-moments.  148 

Perhaps the most thorough investigations, to date, on the probability distribution 149 

of daily precipitation amounts are the global studies by Papalexiou and Koutsoyiannis 150 

(2012, 2016).  Papalexiou and Koutsoyiannis (2012) derived a generalized Gamma 151 

distribution (GG) from Entropy theory, using plausible constraints for wet-day series of 152 

daily precipitation series. Together, the two studies by Papalexiou and Koutsoyiannis 153 

(2012, 2016) revealed that the GG distribution provides a good approximation to the 154 

behavior of observed L-moments of global series of wet-day daily precipitation at 11,519 155 

and 14,157 stations, respectively.  156 

Deidda and Puliga (2006) investigated the degree of left-censoring of wet-day 157 

series needed to fit a Generalized Pareto (GPA) distribution for 200 stations in Sardinia, 158 

Italy with a range of modern statistical analysis techniques.  The “failure-to-reject” 159 

goodness-of-fit method was used to establish an optimal threshold for left censoring at 160 

each station to make the observed data fit a GPA distribution.  Often, Deidda and Puliga 161 

(2006) found that no optimal threshold for left censoring could make the data fit a GPA 162 

distribution at 5 and 10% confidence intervals.  Deidda and Puliga (2006) remarked that 163 

data rounding off may explain some of the lack of fit, but their results still leave room for 164 

debate on the most likely candidate distribution for daily precipitation. 165 

1.3 Precipitation trends and changes: 166 

The third section of Table 1 summarizes a small portion of the precipitation trend 167 

literature which has become a rather large area of inquiry due to concerns over climate 168 

change, as evidenced from recent reviews on the subject (Easterling et al., 169 

2000;Trenberth, 2011;Madsen et al., 2014).  Interestingly, within the literature devoted to 170 

detection of changes in precipitation patterns, we find a reliance on previous studies of 171 

the probability distribution of daily precipitation for evaluating changes in distributional 172 

parameters and in selecting candidate distributions.  Almost universally, the G2 173 
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distribution appears to be accepted without serious consideration of alternative 174 

distributions.  For instance, (Groisman et al., 1999) wrote simply, “It is widely 175 

recognized that the distribution of daily precipitation totals, P, can be approximated by 176 

the Gamma distribution.”  That is not to say the G2 distribution is not tested for its fit to 177 

the observed data.  For instance, (Groisman et al., 1999) compared maps of the empirical 178 

probability of summer 1-day rainfall exceeding 50.4 mm with maps of probabilities 179 

determined by a stochastic model using the fitted G2 distribution for the amounts.  They 180 

found acceptable fits in regions where there are enough observed daily rainfall events 181 

greater than 50.4 mm.   182 

This is an interesting contrast to the precipitation frequency analysis literature 183 

where a Gamma distribution is often fit to wet-day series for the purpose of examining 184 

extreme rainfalls instead of using the AMS series fitted by a GEV or other distribution.  185 

Yoo et al. (2005) explained that conventional frequency analysis (using AMS) cannot 186 

expect to predict precipitation changes resulting from climate change; while an 187 

examination of the differences in the Gamma distribution’s parameters (fitted to the 188 

whole wet-day record) might predict such changes.  They found that modifying the 189 

parameters of the daily Gamma distribution can explain changes in rainfall quantiles 190 

predicted by General Circulation Models (GCM) under various climate change scenarios.  191 

Wilby and Wigley (2002) plotted the expected 100-year changes in the shape and scale 192 

parameter of the G2 distribution according to two GCM models’ predictions. 193 

In a national study of precipitation trends, Karl and Knight (1998) employed the 194 

G2 distribution to fill in missing precipitation observations. Karl and Knight (1998) wrote 195 

that “To determine if precipitation occurs on any missing day, a random number 196 

generator is used such that the probability of precipitation is set equal to the empirical 197 

probability of precipitation during that month. If precipitation occurs, then the gamma 198 

distribution is used to determine the amount that falls for that day, again using a random 199 

number generator.”  Both Watterson and Dix (2003) and Watterson (2005) assumed a G2 200 

distribution for daily precipitation in the development of stochastic rainfall models for 201 

use in evaluating changes in precipitation extremes. 202 

We conclude from this brief review that both the precipitation trend and climate 203 

change literature have widely used the G2 distribution as a powerful tool to examine not 204 

only the possible changes in precipitation patterns, but also the relative rate of change in a 205 

geospatial context through mapping.  In summary, there are a wide variety of previous 206 

studies which have explored the probability distribution of daily precipitation for the 207 

purposes of precipitation frequency analysis, stochastic precipitation modeling and for 208 

trend detection.  There seems to be a consensus that annual maxima appear to be well 209 

approximated by either a GEV, Gumbel or Gamma probability density function (pdf) and 210 

that series of wet-day daily precipitation totals are well approximated by a Gamma 211 

Generalized Gamma, or in some cases a mixed exponential pdf.  However, other than the 212 

two recent global studies by Papalexiou and Koutsoyiannis (2012, 2016).  We are 213 

unaware of any studies that have used recent developments in regional hydrologic 214 

frequency analysis such as L-moment diagrams or probability plot goodness of fit 215 

evaluations to evaluate the probability distribution of the complete series of daily 216 

precipitation.   217 
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The recent studies by Papalexiou and Koutsoyiannis (2012, 2016) represent 218 

perhaps the most comprehensive studies to date, however, they only consider wet-day 219 

series of daily precipitation and their L-moment evaluations only evaluate the 220 

relationship between L-Skewness and L-Cv, thus they were unable to fully evaluate the 221 

goodness-of-fit of the several relatively new three-parameter pdfs introduced in their 222 

studies such as the generalized Gamma (GG) and the generalized Burr type XII (GB) 223 

pdfs which would require construction of L-Kurtosis versus L-Skew diagrams.  224 

Analogous to those two studies, this paper uses several large scale national datasets to re-225 

examine the question of which of the commonly used continuous distribution functions 226 

which are widely used in the fields of hydrology, meteorology and climate best fit both 227 

wet-day and complete series of observed daily precipitation data.   228 

Instead of considering the GG distribution, the pdf recommended by both 229 

Papalexiou and Koutsoyiannis (2012, 2016), which is only suited to wet-day series, has 230 

seen very limited use and for which analytical and/or polynomial relationships for L-231 

Kurtosis are unavailable as they are for most commonly used pdfs in hydrology, we 232 

consider the more widely used 3 parameter generalization of the Gamma distribution 233 

known as the Pearson type III (P3) distribution.  Once analytical and polynomial L-234 

moment relationships and parameter estimation methods become available for the GG 235 

distribution, future studies should compare the P3 and GG distributions on wet-day series, 236 

because on the basis of this study, and Papalexiou and Koutsoyiannis (2016), the P3 and 237 

GG distributions appear to have tremendous potential for approximating the distribution 238 

of wet-day series. 239 

Our primary objective is to use a very large spatially distributed dataset at both 240 

the point and catchment scales, to determine a suitable probability distribution of full-241 

record series and wet-day series of daily precipitation using L-moment diagrams and 242 

probability plot correlation coefficient goodness of fit statistics.  Analogous to the recent 243 

study by Papalexiou and Koutsoyiannis (2016), these evaluations yield very different 244 

conclusions than previous research on this subject.   245 

2. Study area and data 246 

Precipitation depths at the point and catchment scales are important information 247 

in hydrology, meteorology, and other fields, thus our study focuses on both of them. For 248 

point precipitation, we employ a data set comprised of daily precipitation depths at 237 249 

first-order NOAA stations from 49 U.S. states (Hawaii is excluded due to fundamentally 250 

different precipitation behavior).  Station locations are shown in Figure 1a.  In contrast, 251 

the areal average precipitation for 305 catchments in the international Model Parameter 252 

Estimation Experiment (MOPEX) data set (Duan et al., 2006) is also selected for analysis. 253 

The catchment locations and boundaries are shown in Figure 1b.  The data were quality 254 

controlled to remove null values.  When greater than 6 null values occurred in a given 255 

year or greater than 3 in a given month, the full year of data was removed.  When fewer 256 

than these numbers of null values were present, they were treated as zeroes.  The average 257 

record length for point precipitation depths for the 237 sites is 24,657 days (67.5 years).  258 

The distribution of record lengths corresponding to the 237 first-order NOAA stations is 259 

shown in Figure 2.  The MOPEX data set consists of 56 years of areal average 260 
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precipitation from 1948 to 2003, corresponding to a fixed record length 20,454 days for 261 

each of the 305 catchments shown in Figure 1b.  262 

[Figure 1 goes here] 263 

[Figure 2 goes here] 264 

In addition to the full-record series of daily precipitation, wet-day series were 265 

extracted from both data sets.  The wet-day series were constructed by excluding zero 266 

and “trace” values (those with less than “0.01” recordable precipitation).  Wilks (1990) 267 

discussed other ways to treat trace precipitation and left-censored data, but for 268 

convenience, they are simply excluded.  The mean wet-day record lengths for point and 269 

areal average precipitation are 7,219 days (equivalent to nearly 20 years) and 14,043 days 270 

(more than 38 years), respectively.  The distributions of wet-day record length are shown 271 

in Figure 3.  As expected, the proportion of wet-days in the areal average precipitation 272 

data set is higher than that in the point precipitation data set.   273 

[Figure 3 goes here] 274 

3. Methodology 275 

 This section describes the methods of analysis used for assessing the goodness-of-276 

fit of various distributional hypotheses, namely, L-moment diagrams and probability plot 277 

correlation coefficients.   278 

3.1 L-Moment Diagrams 279 

L-moment diagrams are now a widely accepted approach for evaluating the 280 

goodness of fit of alternative distributions to observations.  The theory and application of 281 

L-moments introduced by Hosking (1990) is now widely available in the literature 282 

(Stedinger et al., 1993;Hosking and Wallis, 1997), hence it is not reproduced here.   283 

The distribution of daily precipitation totals is highly skewed due to the large 284 

proportion of days with zero precipitation. Higher order conventional moment ratios such 285 

as skewness and kurtosis are very sensitive to extreme values and can exhibit enormous 286 

downward bias even for extremely large sample sizes (Vogel and Fennessey, 1993) as is 287 

the case here.  However, L-moment ratios are approximately unbiased in comparison to 288 

conventional moment ratios, thus providing a particularly useful tool for investigating the 289 

pdf of precipitation series.   290 

L-moment ratio diagrams provide a convenient visual way to view the 291 

characteristics of sample data compared to theoretical statistical distributions.  The L-292 

moment diagrams: L-Kurtosis (τ4) vs L-Skew (τ3) and L-Cv (τ2) vs L-Skew (τ3) enable us 293 

to compare the goodness of fit of a range of three-parameter, two-parameter, and one-294 

parameter (or special case) distributions.  Table 2 displays distributions analyzed by 295 

means of the τ4 vs τ3 L-moment ratio diagrams. 296 

[Table 2 goes here] 297 

Table 3 displays distributions analyzed by means of the τ2 vs τ3 L-moment ratio 298 

diagrams. 299 

[Table 3 goes here] 300 
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L-moment ratio diagrams have been used before to examine the distribution of 301 

series of annual maximum precipitation data (Pilon et al., 1991;Park and Jung, 2002;Lee 302 

and Maeng, 2003;Papalexiou and Koutsoyiannis, 2013) and left-censored records 303 

(Deidda and Puliga, 2006).  Other than the two recent global studies by Papalexiou and 304 

Koutsoyiannis (2012, 2016) which examined the agreement between empirical and 305 

theoretical relationships between L-Cv and L-Skew, this is the only study we are aware 306 

of, in which a set of uncensored daily precipitation records have been subjected to such a 307 

comprehensive L-moment goodness-of-fit analysis.  L-moment estimators were chosen in 308 

this study for a variety of reasons: (1) they are easily computed and nicely summarized 309 

by Hosking and Wallis (1997) for all the cases considered in this study, and (2) estimates 310 

of L-moments unbiased and estimates of their ratios are nearly unbiased, and thus for the 311 

extremely large sample sizes considered here, sampling variability of empirical L-312 

moment ratios will be extremely small especially when contrasted to distributional choice 313 

comparisons.   314 

3.2 Probability plot correlation coefficient goodness-of-fit evaluation 315 

Probability plots are constructed for each of the full record and wet-day series 316 

using L-moment estimators of the distribution parameters (see Hosking and Wallis 317 

(1997)) for the distributions indicated in Table 4.   318 

[Table 4 goes here] 319 

The goodness of fit of each probability plot is summarized using a probability plot 320 

correlation coefficient (PPCC, or simply, r).  The PPCC statistic has a maximum value of 321 

1.  The PPCC has been shown to be a powerful statistic for evaluating the goodness-of-fit 322 

of a very wide range of alternative distributional hypotheses (Stedinger et al., 1993) and 323 

for performing hypothesis tests of various two parameter distributional alternatives.   324 

To construct a probability plot and to estimate a probability plot correlation 325 

coefficient, requires estimation of a plotting position.  There are two classes of plotting 326 

positions, those that yield unbiased exceedance probabilities and those that yield unbiased 327 

quantile estimates.  The Weibull plotting position given by p=i/(n+1) yields an unbiased 328 

estimate of exceedance probability regardless of the underlying distribution (see 329 

(Stedinger et al., 1993)).  Alternatively there would be a unique plotting position to use 330 

for each probability distribution, and it is now well known that unbiased plotting 331 

positions for three parameter distributions require an additional parameter to estimate 332 

within the plotting position.  For example, Vogel and McMartin (1991) derived an 333 

unbiased plotting position for the P3 distribution which depends upon the skewness of the 334 

distribution, a parameter which adds so much additional uncertainty to the analysis that 335 

led Vogel and McMartin (1991), after considerable analysis, to not recommend its use.  336 

To put all the distributional alternatives on the same footing, we chose to use the Weibull 337 

plotting position for estimation of all PPCC values. 338 

4. Results and analysis 339 

4.1 L-Moment Diagrams 340 

4.1.1 L-Cv vs L-Skew 341 
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Figure 4 displays empirical and theoretical distributional relationships between L-342 

Cv and L-Skew for point values of daily precipitation (Figure 4a) and areal average 343 

values of daily precipitation (Figure 4b).  The various curves represent the theoretical 344 

relationship between L-Cv and L-Skew for the distributions indicated.  Each plotted point 345 

represents the empirical relationship between L-Cv and L-Skew for a single precipitation 346 

station or catchment.  By comparing the empirically derived points with the theoretical 347 

curves, it is possible to see the degree to which the statistical character of the data record 348 

matches those of the candidate distributions.  We emphasize again, that the sample sizes 349 

are large enough in this study so that one may, approximately, ignore sampling variability 350 

in all L-moment diagrams. This phenomenon was nicely illustrated in Figure 2 of Blum 351 

et al. (2017) for record lengths similar to those used here, but corresponding to daily 352 

streamflow records.   353 

The empirical L-moment ratios corresponding to the full-record and wet-day point 354 

precipitation series fall within completely different regions in Figure 4a, which is due to 355 

the fact that the full-record point precipitation series contain a very large number of zero 356 

observations. In contrast, there are much fewer zero observations in the catchment full-357 

record precipitation series thus the empirical L-moment ratios corresponding to the full-358 

record and wet-day catchment precipitation series overlap roughly 50% of the time as 359 

shown in Figure 4b.  360 

Both Figure 4a and Figure 4b illustrate a nearly linear relationship between the L-361 

Skew and L-Cv for the two types of full record series.  Importantly, these two lines of 362 

points, however, do not fall along any of the theoretical curves, demonstrating that the 2-363 

parameter Gamma distribution cannot describe the tail behavior of full-record series of 364 

precipitation as has often been assumed in the past.   365 

[Figure 4 goes here] 366 

In Figure 4a, the wet-day series’ points fall primarily within a region bounded by 367 

the G2 and GP2 theoretical curves, with the W2 passing through some of the points.  In 368 

Figure 4b, the wet-day series’ points fall primarily in the upper region of the W2 369 

theoretical curve, with the G2 passing through some of the points. These patterns do not 370 

indicate a clearly preferred distribution, especially considering that the large sample sizes 371 

associated with these series result in negligible sampling variability. Blum et al. (2017, 372 

Figure 2) used L-moment diagrams for complete series of daily streamflow observations 373 

to demonstrate that the sampling variability in L-moment ratios is negligible for the 374 

sample sizes considered in this study.  Thus, the scatter shown in Figure 4 is likely due to 375 

real distributional differences rather than due to sampling variability as is often the case 376 

when one constructs L-moment diagrams for short AMS precipitation records.   377 

4.1.2 L-Kurtosis vs L-Skew 378 

 Figure 5 displays empirical and theoretical distributional relationships between L-379 

Kurtosis vs L-Skew point values of daily precipitation (Figure 5a) and areal average 380 

values of daily precipitation (Figure 5b).  The plotted points for the two full record series 381 

follow a linear relationship approximately, but the relationships are remarkably similar to 382 

the theoretical curve for the Pearson Type-III (P3) distribution.  In fact, the P3 pdf seems 383 

to be the only 3-parameter distribution that could possibly fit the full record data.  It is 384 
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worth noting that the overall lower bound of L-Kurtosis for all distributions falls below 385 

but quite close to the P3 curve at high L-Skew values in Figure 5.   386 

[Figure 5 goes here] 387 

The estimated L-moment ratios of the wet-day series of point precipitation in 388 

Figure 5a reveal more scatter on the plot than for the corresponding full-record series. In 389 

this case, the closest theoretical curve to the wet-day points is also the P3 distribution, but 390 

the fit is less striking for the wet-day series than for the corresponding full record series. 391 

In Figure 5b, the L-moment ratios of the wet-day series of areal average precipitation 392 

shows less scatter than for the corresponding full record series and in this case of areal 393 

rainfall the P3 theoretical curve passes through most of the points for both the full and 394 

wet-day series.  Though the fit of the wet-day series to P3 is less striking than for the full 395 

record series, the L-moment ratio estimates occupy a space that can be well represented 396 

by the Kappa distribution, which occupies not a curve, but a region of the L-Kurtosis vs 397 

L-Skew diagram as shown in Figure A1 of Hosking and Wallis (1997).  See Hosking 398 

(1994) and Hosking and Wallis (1997, Appendix A10) for a complete description of the 399 

4-parameter Kappa distribution.   400 

4.2 PPCC 401 

4.2.1 Standard boxplots of PPCC 402 

The L-moment diagrams successfully identify two potential candidate 403 

distributions for representing the full-record and wet-day daily precipitation series at the 404 

point and catchment scales.  The PPCC statistic offers another quantitative method for 405 

comparing the goodness of fit of different distributions to the daily precipitation 406 

observations.  Tables 5 and 6 summarize the central tendency and spread of the values of 407 

PPCC for each of the distributions for both the full-record and wet-day series of point and 408 

catchment scale daily precipitation, respectively.  The highest values for the mean, 409 

median, 95th percentile, and 5th percentile of the PPCC are shown in bold type.  The 410 

lowest values of the sample standard deviation of the PPCC values, denoted ŝ, are also 411 

shown in bold.  Figure 6 illustrates box-plots of the values of PPCC for distributions 412 

fitted to the full-record and wet-day series of daily precipitation data at the point scale. 413 

Figure 7 shows box-plots of PPCC values for distributions fitted to the full-record and 414 

wet-day precipitation series at the catchment scale. 415 

[Table 5 goes here] 416 

[Table 6 goes here] 417 

[Figure 6 goes here] 418 

[Figure 7 goes here] 419 

Figure 6 and Table 5 indicate that for the full-record series of point daily 420 

precipitation depths, only the G2, P3, and KAP distributions perform well. On the other 421 

hand, for the wet-day series of point daily precipitation, all the distributions have median 422 

PPCCs well above 0.9.  The same situation appears in the areal average precipitation 423 

shown in Figure 7 and Table 6, except that the median PPCCs of the remaining four 424 

distributions for the wet-day series are significantly lower than the corresponding values 425 

for point precipitation. 426 
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The insets in Figures 6 and 7 show detailed views of the boxplots of PPCC values 427 

for the G2, P3, and KAP distributions for point and areal average daily precipitation.  428 

Both types of precipitation data shows the same results that the P3 is the best performing 429 

distribution on average for the full-record series, but the KAP distribution shows the 430 

highest PPCCs on average for the wet-day series.   431 

4.2.2 Graphical comparison of P3, G2, and KAP 432 

Across all previous comparison, the P3, G2, and KAP are the most likely 433 

distributions for describing daily precipitation at the point or catchment scales.  The 434 

insets in Figures 6 and 7 identify the distributions that exhibit the best fit to the observed 435 

series. However, these inserts do not indicate by how much the best performing 436 

distribution outperforms the second or third best.  For this purpose, pairwise comparisons 437 

of the PPCC values of two highly performing distributions for all the stations and 438 

catchments are instructive.  A simple graphical method can accomplish this goal.   439 

Figure 8a and Figure 8b compare the PPCC values of the P3 (vertical axis) and 440 

G2 (horizontal axis) distributions for the full-record and wet-day series of point daily 441 

precipitation, respectively.  Approximately 98% of stations are displayed on both figures; 442 

the remaining stations lie outside the plot domains.  Points lying above the diagonal line 443 

indicate that the P3 distribution has a higher PPCC for that particular station, and points 444 

lying below the diagonal line indicate the G2 results in a higher PPCC.  The full-record 445 

plot (Figure 8a) shows that in nearly every case, the P3 distribution outperforms the G2 446 

distribution.  When the G2 does outperform the P3, the PPCCs are both very high and 447 

nearly equal.  The wet-day plot shows that the P3 distribution performs significantly 448 

better than the G2 distribution in many cases.  Thus, we conclude the P3 distribution 449 

better represents wet-day daily point precipitation than the more commonly used G2 450 

distribution, in nearly every case.   451 

[Figure 8 goes here] 452 

Figures 8c and Figure 8d compare the PPCC values of P3 and G2 for the full 453 

record series and wet-day series of areal average precipitation, respectively.  The results 454 

are nearly the same as for the point precipitation in the sense that most points are above 455 

the diagonal line; while for a few catchments whenG2 does outperform P3, the points lie 456 

on the dividing line, showing only very slight superiority.   457 

Figure 9a and Figure 9b display similar plots comparing the KAP (vertical axis) 458 

and P3 (horizontal axis) distribution, for the full-record and wet-day series of point 459 

precipitation, respectively.  For the full-record series the P3 distribution outperforms the 460 

KAP distribution with most of the points lying below the dividing line; whereas, for the 461 

wet-day series, the KAP distribution outperforms the P3 distribution for a majority of 462 

sites. 463 

[Figure 9 goes here] 464 

The same conclusion can be obtained for the full-record series of areal average 465 

precipitation in Figures 9c except that the better distribution does not dominate, with only 466 

63% points have higher PPCC for P3 distributions.  For the wet-day series of areal 467 

average precipitation in Figures 9d, the performance of KAP distribution is comparable 468 

with that of P3 distribution with almost the same number of points lying in each region. 469 
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It is somewhat surprising that the 3-parameter P3 distribution outperforms the 4-470 

parameter KAP distribution because the extra information contained in the 4th parameter 471 

(essentially a second shape parameter in the case of the Kappa distribution) would be 472 

expected to lead to a better goodness-of-fit.  The L-moment diagram (Figure 5), however, 473 

shows that the fit of the full record data to the P3 theoretical curve is so good that a 4th 474 

parameter could be extraneous.  Additionally, it should be noted that the pattern of the 475 

full record stations or watersheds on the L-Kurtosis vs L-Skew plot approaches the 476 

overall lower bound for all distributions, a place where the Kappa distribution parameter 477 

estimates may become less accurate. The “h” shape parameter, for example, approaches 478 

infinity in this region (see Hosking and Wallis (1997, Figure A1)).   479 

5. Conclusions 480 

This study has demonstrated that L-moment diagrams and probability plot 481 

correlation coefficient goodness of fit evaluations can provide new insight into the 482 

distribution of very long series of daily precipitation at both the point and catchment 483 

scales.  Though the commonly used 2-parameter Gamma distribution performs fairly well 484 

on the basis of traditional goodness-of-fit tests, L-moment diagrams and probability plot 485 

correlation coefficient goodness of fit evaluations reveal that very long series of 486 

uncensored daily point and areal average precipitation are better approximated by a 487 

Pearson-III distribution and importantly, they do not resemble any of the other commonly 488 

used distributions.   489 

We conclude that for representing uncensored, full record daily precipitation at 490 

the point and catchment scales, the 3-parameter Pearson-III distribution performs 491 

remarkably well.  For cases in which only wet-day precipitation amounts are required, the 492 

Pearson-III distribution is comparable with the 4-parameter Kappa distribution for the 493 

areal average precipitation; when the point precipitation is of concern, the Kappa 494 

distribution should be the distribution of choice.  We also conclude that future 495 

investigations should consider comparisons between the generalized Gamma distribution 496 

introduced by Papalexiou and Koutsoyiannis (2012, 2016) for wet-day daily precipitation 497 

and both the Pearson type III and Kappa distributions recommended here.   498 
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 608 

Table captions: 609 

Table 1: Review of literature pertinent to daily precipitation probability distribution 610 

selection. 611 

Table 2: Table 2: Theoretical probability distributions presented on the L-Kurtosis vs L-612 

Skew L-moment diagram.  Italicized distributions are special cases of other distributions. 613 

Table 3: Theoretical probability distributions presented on the L-Cv vs L-Skew L-614 

moment diagram.  615 

Table 4: Distributions used in probability plot goodness of fit evaluations. 616 

Table 5: Central tendency and spread of values of PPCC for the 237 precipitation 617 

stations. 618 

Table 6: Central tendency and spread of values of PPCC for the 305 areal average 619 

precipitation catchments. 620 

Figure captions: 621 

Figure 1: Map showing locations of a) 237 precipitation gaging stations, and b) 305 622 

catchments. 623 

Figure 2: Distribution of full record length of point precipitation base on weather stations. 624 
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Figure 3: Distribution of wet-day record length: a) point precipitation; and b) areal 625 

average precipitation over watersheds.  Days with zero precipitation are removed in the 626 

wet-day records 627 

Figure 4: L-Cv vs L-Skew L-moment ratio diagram of sample L-moments and 628 

theoretical distributions: a) point precipitation; and b) areal average precipitation depths. 629 

Figure 5: L-Skew vs L-Kurtosis L-moment ratio diagram of sample L-moments and 630 

theoretical distributions: a) point precipitation; and b) areal average precipitation depths. 631 

Logistic (L), Normal (N), Uniform (U), Gumbel (G), and Exponential (E) distributions 632 

appear as a single point. 633 

Figure 6: Standard boxplots of r for all 7 distributions evaluated for a) full record, and b) 634 

wet-day series of point precipitation depths. 635 

Figure 7:  Standard boxplots of r for all 7 distributions evaluated for a) full- record, and b) 636 

wet-day series of areal average precipitation depths. 637 

Figure 8: Comparison of PPCC (r) values for the P3 (vertical axis) and G2 (horizontal 638 

axis) distributions for the a) point precipitation depths’ full -record, b) point precipitation 639 

depths’ wet-day, c) areal average precipitation depths’ full-record, and d) areal average 640 

precipitation depths’ wet-day series.  Points lying above the line represent stations with a 641 

higher r for the P3 distribution than G2 distribution. 642 

Figure 9: Comparison of r values for P3 (horizontal axis) and KAP (vertical axis) 643 

distributions for the a) point precipitation depths’ full-record, b) point precipitation 644 

depths’ wet-day, c) areal average precipitation depths’ full-record, and d) areal average 645 

precipitation depths’ wet-day series. 646 

Tables 647 

 648 
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Table 2: Theoretical probability distributions presented on the L-Kurtosis vs L-Skew L-

moment diagram.  Italicized distributions are special cases of other 

distributions. 

Distribution Abbreviation Parameters 

Generalized Extreme Value Type III GEV 3 

Generalized Logistic GLO 3 

Generalized Pareto GPA 3 

Lognormal LN3 3 

Pearson Type III   P3 3 

Exponential E 2 

Gumbel G 2 

Normal N 2 

Logistic L 2 

Uniform U 1 

 

Table 3: Theoretical probability distributions presented on the L-Cv vs L-Skew L-

moment diagram.  

Distribution Abbreviation Parameters 

Gamma G2 2 

Generalized Pareto GP2 2 

Lognormal LN2 2 

Weibull W2 2 

 

Table 4: Distributions used in probability plot goodness of fit evaluations. 

Distribution Abbreviation Parameters 

Generalized Extreme Value Type III GEV 3 

Generalized Logistic GLO 3 

Generalized Pareto GPA 3 

Lognormal LN3 3 

Pearson Type III   P3 3 

Gamma G2 2 

Kappa KAP 4 

 

Table 5: Central tendency and spread of values of PPCC for the 237 precipitation 

stations. 

Distribution 
Full Record Percentiles Wet Day Percentiles 

Mean  Median ŝ 95th 5th Mean Median ŝ 95th 5th 

P3 0.9953 0.9962 0.0045 0.9991 0.9892 0.9952 0.9971 0.0063 0.9995 0.9872 

GEV 0.5949 0.5928 0.0527 0.6755 0.5166 0.9338 0.9375 0.0222 0.9609 0.8944 

GPA 0.6192 0.6177 0.0604 0.7145 0.5339 0.9793 0.9828 0.0145 0.9949 0.9500 

GLO 0.5939 0.5922 0.0509 0.6708 0.5172 0.9115 0.9154 0.0235 0.9423 0.8734 

LN3 0.7975 0.8078 0.0545 0.8731 0.7055 0.9838 0.9855 0.0075 0.9924 0.9727 

G2 0.9945 0.9954 0.0046 0.9988 0.9876 0.9925 0.9949 0.0079 0.9990 0.9789 

KAP 0.9780 0.9784 0.0137 0.9926 0.9644 0.9971 0.9985 0.0048 0.9997 0.9915 
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Table 6: Central tendency and spread of values of PPCC for the 305 areal average 

precipitation catchments. 

Distribution 
Full Record Percentiles Wet Day Percentiles 

Mean  Median ŝ 95th 5th Mean Median ŝ 95th 5th 

P3 0.9972 0.9975 0.0023 0.9993 0.9941 0.9977 0.9985 0.0028 0.9996 0.9936 

GEV 0.6757 0.6706 0.0666 0.8014 0.5836 0.8003 0.7965 0.0474 0.8917 0.7264 

GPA 0.7247 0.7177 0.0795 0.8711 0.6140 0.8688 0.8687 0.0484 0.9586 0.7894 

GLO 0.6654 0.6607 0.0608 0.7772 0.5803 0.7800 0.7750 0.0441 0.8669 0.7101 

LN3 0.8717 0.8736 0.0444 0.9409 0.8035 0.9362 0.9373 0.0224 0.9737 0.8983 

G2 0.9967 0.9971 0.0024 0.9992 0.9935 0.9974 0.9985 0.0034 0.9996 0.9924 

KAP 0.9959 0.9968 0.0034 0.9996 0.9898 0.9976 0.9987 0.0026 0.9998 0.9929 
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Figures 

 

 
Figure 1: Map showing locations of a) 237 point precipitation gaging stations, and b) 

305 MOPEX catchments. 
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Figure 2: Distribution of length of records of point daily precipitation data for the 237 

gaging stations depicted in Figure 1a. 
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Figure 3: Distribution of wet-day record lengths corresponding to the two datasets: a) 

point precipitation; and b) areal average precipitation over catchments.  Days with zero 

precipitation are removed in the wet-day records 
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Figure 4: L-Cv vs L-Skew L-moment ratio diagram of sample L-moments and 

theoretical distributions for: a) point daily precipitation; and b) areal average daily 

precipitation depths. 
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Figure 5: L-Skew vs L-Kurtosis L-moment ratio diagram of sample L-moments and 

theoretical distributions for: a) point daily precipitation; and b) areal average daily 

precipitation depths. Note that Logistic (L), Normal (N), Uniform (U), Gumbel (G), and 

Exponential (E) distributions appear as a single point. 
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Figure 6: Standard boxplots of r for all 7 distributions evaluated for a) full record, and b) 

wet-day series of point precipitation depths. 
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Figure 7:  Standard boxplots of r for all 7 distributions evaluated for a) full- record, and b) 

wet-day series of areal average precipitation depths. 
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Figure 8: Comparison of PPCC (r) values for the P3 (vertical axis) and G2 (horizontal 

axis) distributions for the a) point precipitation depths’ full -record, b) point precipitation 

depths’ wet-day, c) areal average precipitation depths’ full-record, and d) areal average 

precipitation depths’ wet-day series.  Points lying above the line represent stations with a 

higher r for the P3 distribution than G2 distribution. 
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Figure 9: Comparison of r values for P3 (horizontal axis) and KAP (vertical axis) 

distributions for the a) point precipitation depths’ full-record, b) point precipitation 

depths’ wet-day, c) areal average precipitation depths’ full-record, and d) areal average 

precipitation depths’ wet-day series. 
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